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a b s t r a c t

The first author introduced the circuit–cocircuit reversal systemof an orientedmatroid, and
showed thatwhen theunderlyingmatroid is regular, the cardinalities of such systemand its
variations are equal to special evaluations of the Tutte polynomial (e.g., the total number of
circuit–cocircuit reversal classes equals t(M; 1, 1), the number of bases of the matroid). By
relating these classes to activity classes studied by the first author and Las Vergnas, we give
an alternative proof of the above results and a proof of the converse statements that these
equalities fail whenever the underlying matroid is not regular. Hence we extend the above
results to an equivalence of matroidal properties, thereby giving a new characterization of
regular matroids.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The cycle–cocycle reversal system of a graph, introduced in [6], consists of equivalence classes of orientations of the graph
with respect to the cycle–cocycle reversal relation, that is, two orientations are equivalent if they differ by successive reversals
of directed (co)cycles. As proven in the same paper, the number of cycle–cocycle reversal classes of G equals the evaluation
t(G; 1, 1) of its Tutte polynomial, which is also the number of spanning trees of G. This result can be thought as a ‘‘linear
algebra free’’ formulation of Kirchhoff’s Matrix-Tree Theorem. In particular, the cycle–cocycle reversal system is related to
various combinatorial objects associated to the graph Laplacian, notably the sandpile group (also known as the critical group
or Jacobian group in the literature). The notion of chip-firing (related to the abelian sandpile model) can also be partially
interpreted by cycle–cocycle reversals. We refer the reader to [6, Section 5] and [1] for details.

The above setup, and further results involving Tutte polynomial evaluations for related reversal classes, were generalized
to regular matroids in [7] (in terms of a circuit–cocircuit reversal system). This provides an approach to generalize the theory
of sandpile groups and chip-firing to regularmatroids (different from the approach in [11]). Such topic has been investigated
since then in [3] in a unifying way.

The circuit–cocircuit reversal system is actually defined for general oriented matroids, and it was shown in [7] that
the aforementioned Tutte polynomial evaluations are not available for U2,k, k ≥ 4. Since U2,4 is the excluded minor for
the class of regular matroids within oriented matroids, it was expected that these enumerative results are not available
when the oriented matroid is not regular; we will prove this rigorously in this note. In particular, we extend the results
in [7] to an equivalence of (oriented) matroid properties. We use a noteworthy general relation between circuit–cocircuit
reversal classes and activity classes of (re)orientations, which are known to be enumerated using the same Tutte polynomial
evaluations, and have been introduced in the context of the active bijection [5,8–10]. We also use this to give a short proof of
results in [7].
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2. Preliminaries

We assume that the reader is familiar with the basic theory of oriented matroids [4]. Given an oriented matroid M on E,
we identify the set of its reorientations with 2E via the bijection associating A ⊆ E with −AM .

LetM be an oriented matroid on E. Following [7], let us writeM ∼ −CM if C is a positive circuit or cocircuit ofM (we say
that −CM is obtained from M by a circuit or cocircuit reversal, respectively). Applying the same rule to reorientations −AM
for A ⊆ E (i.e., writing −AM ∼ −C△AM when C is a positive circuit or cocircuit of −AM) and taking the transitive closure
of the relation, we obtain an equivalence relation, whose equivalence classes are called circuit–cocircuit reversal classes of
reorientations of M . Allowing only the use of positive circuits, resp. positive cocircuits, yields by the same way the circuit
reversal classes, resp. the cocircuit reversal classes. As observed in [7], circuit reversals act on the totally cyclic part of M (the
union of positive circuits ofM) and cocircuit reversals act on the acyclic part ofM (the union of positive cocircuits ofM).

It was shown and geometrically illustrated in [7, Proposition 2 and Figure 1] that, for any integer k, the number of acyclic
cocircuit reversal classes of a uniform oriented matroid U2,k equals 1, or 2, if k is even, or odd, respectively. On the other
hand, it is well-known that an oriented matroidM is regular if and only if U2,4 is not a minor ofM . Indeed, regular matroids
are precisely the orientable binary matroids [4, Theorem 7.9.3], so the claim follows from [12, Theorem 6.5.4].

Now, let M be an oriented matroid on a linearly ordered set E. Consider a reorientation −AM of M such that A does not
contain the minimum element of a positive circuit or cocircuit of −AM , we call such a reorientation circuit–cocircuit minimal
(with respect toM); the terminology here is from [1], and it is called active fixed and dual-active fixed in [9,10]. Similarly, we
can define a circuit minimal (or active-fixed), resp. a cocircuit minimal (or dual-active-fixed), reorientation −AM of M when A
does not contain the minimum element of a positive circuit, resp. cocircuit. Let us denote by t(M; x, y) the Tutte polynomial
ofM . From the works on the active bijection [5,8–10], we have:

Theorem 2.1. Let M be an oriented matroid on a linearly ordered set. Then

(1) t(M; 1, 1) = # circuit–cocircuit minimal reorientations of M,
(2) t(M; 1, 2) = # cocircuit minimal reorientations of M,
(3) t(M; 2, 1) = # circuit minimal reorientations of M,
(4) t(M; 1, 0) = # (circuit-)cocircuit minimal acyclic reorientations of M,
(5) t(M; 0, 1) = # circuit(-cocircuit) minimal totally cyclic reorientations of M.

Let us explain this briefly; details can be found in [5,8–10]. The active partition ofM is a partition of its ground set induced
by taking differences of unions of positive circuits/cocircuits whose the minimum element is greater than a given element.
Therefore, the minimum elements of the parts are precisely the minimum elements of some positive circuits/cocircuits
(called active/dual-active elements). Activity classes of reorientations are the sets of reorientations obtained from a given
reorientation by arbitrarily reorienting parts of its active partition. It turns out that all reorientations obtained by this way
share the same active partition. Hence activity classes partition the set of reorientations. By choosing a suitable reorientation
for each part, each activity class contains a unique circuit–cocircuit minimal reorientation, which can be thought of as a
representative of the class. Finally, using a classical formula of the Tutte polynomial in terms of orientation activities [13],
one enumerates activity classes and gets the above evaluations.

3. Results

We first give a noteworthy property relating reversal classes and activity classes.

Proposition 3.1. Let M be an oriented matroid on a linearly ordered ground set. Every circuit–cocircuit reversal class of M
contains at least one circuit–cocircuit minimal reorientation.

The following proof is essentially given in [2] for graphs, but for the sake of interest and completeness, we include it
here. A corollary of the proof is that a minimal reorientation can be obtained greedily. Moreover, we note that there is an
interpretation using combinatorial commutative algebra [2, Section 4].

Proof. Start with an arbitrary reorientation of M , and greedily reorient any positive (co)circuit whose minimal element
is in the set of reoriented elements with respect to M . Once the procedure stops, we will have a circuit–cocircuit minimal
reorientation equivalent to the starting reorientation, so it suffices to show the procedure always terminates. If this is not the
case, then, since the number of reorientations is finite,without loss of generality,wemust return to the starting reorientation.
Let e be theminimal element that was reoriented (whichmust occur at least twice) in the process.When ewas reoriented for
the first time, we must have reoriented it to remove it from the set of reoriented elements with respect toM , so the second
reorientation is not valid, a contradiction. □

By combining Theorem 2.1 and Proposition 3.1, we can use the set of circuit–cocircuit minimal reorientations (and
variations thereof) as an intermediate object, and get the following corollary concerning the enumeration of reversal classes
in terms of the Tutte polynomial.
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Corollary 3.2. Let M be an oriented matroid on a linearly ordered ground set. The number of circuit–cocircuit reversal classes
is at most t(M; 1, 1), with equality if and only if no two circuit–cocircuit minimal reorientations are contained in the same class.
The number of acyclic cocircuit reversal classes is at most t(M; 1, 0), with equality if and only if no two acyclic cocircuit minimal
reorientations are contained in the same class. Analogous statements hold for each of the other settings in Theorem 2.1.

Proof. The first statement follows from comparing Equation (1) of Theorem 2.1 and Proposition 3.1. The variations follow
from comparing the other equations of Theorem 2.1 and the corresponding counterparts of Proposition 3.1, since circuit and
cocircuit reversals preserve the acyclic and totally cyclic parts of reorientations. □

Now we prove the main theorem of this note, which includes the original results of [7] (the enumerations when M is
regular, with a new proof) and their converses.

Theorem 3.3. Let M be an oriented matroid. Consider the following six statements:

(1) M is regular,
(2) t(M; 1, 1) = # circuit–cocircuit reversal classes of M,
(3) t(M; 1, 2) = # cocircuit reversal classes of M,
(4) t(M; 2, 1) = # circuit reversal classes of M,
(5) t(M; 1, 0) = # acyclic (circuit-)cocircuit reversal classes of M,
(6) t(M; 0, 1) = # totally cyclic circuit(-cocircuit) reversal classes of M.

Then we have the following implications: (1) implies all other statements; (2), (3), (4) each implies (1); (5) implies (1) if M
has no loops; (6) implies (1) if M has no coloops. In particular, if M has no loops nor coloops, then all statements are equivalent.
Moreover, if any of the equalities fail, then the left hand side is larger.

Proof. Let us separate implications.
• (1) ⇒ (2). We give an alternative proof to that of [7]. By Corollary 3.2, it suffices to show that every circuit–cocircuit

reversal class contains a unique circuit–cocircuit minimal reorientation. We claim that any two reorientations within a
reversal class differ by a disjoint union of positive circuits and cocircuits, which will imply that at most one of them can
be minimal, thus proving the implication.

By induction and restricting to the totally circuit part (the acyclic part follows from duality), it suffices to show that if C is
a positive circuit ofM andD is a positive circuit of−CM , then C△D is a disjoint union of positive circuits ofM . By [4, Corollary
7.9.4], we may assume that some totally unimodular matrix Q realizesM . By total unimodularity, if C is a positive circuit of
M , then the characteristic vector χC ∈ {0, 1}E of C is in the kernel ker(Q ) of Q ; similarly, since D is a positive circuit of −CM ,
χD\C −χC∩D ∈ ker(Q ). Since their sum χC△D is in ker(Q ), C△D is a positive vector and contains some positive circuit C1 ofM ,
thus χ (C△D)\C1 = χC△D − χC1 ∈ ker(Q ). Proceeding by induction, we can write C△D as a disjoint union of positive circuits.

• (1) ⇒ (3), (4), (5), (6). Alternatively to [7], the proofs are similar to the above one by restricting to circuit reversals
only, then restricting to totally cyclic reorientations only, and then taking duals.

• (5) ⇒ (1) assuming M has no loops. Suppose M is not regular. Then it has a minor M/A \ B that is isomorphic to U2,4.
By Corollary 3.2, it suffices to show that there are two cocircuit minimal acyclic orientations in the same (circuit-)cocircuit
reversal acyclic class. Up to enlarging A, we can assume that M/A is loopless and that the rank of M/A equals 2. Since M is
loopless, up to reorientation, we can assume that M and M/A are acyclic. Let C and D be the two positive cocircuits of M/A
(which are also cocircuits ofM). Thus, −CM and −DM are in the same acyclic reversal class. Denote S = C△D. Since the rank
ofM/A is 2, any cocircuit ofM/A is the union of all parallel classes but one. Since S is the union of two parallel classes (C \ D
and D\C) ofM/A, no cocircuit ofM is contained in S (otherwise, the complement of S is a parallel class inM/A, and reducing
parallel classes of M/A yields U2,3, a contradiction). Choose a linear ordering of E such that elements of S are greater than
elements of E \ S, then S does not contain the minimum element of a cocircuit (otherwise it would contain a cocircuit), thus
−CM and −DM are both cocircuit minimal.

• (2) ⇒ (1). Suppose M is not regular. Then M ′, the oriented matroid obtained from removing all loops of M , is also
not regular. By the implication (5) ⇒ (1) for M ′, there exist distinct acyclic reorientations −AM ′ and −BM ′ that are
(circuit-)cocircuit reversal equivalent and both (circuit-)cocircuitminimal. Now−AM and−BM are circuit–cocircuit reversal
equivalent reorientations ofM that are both circuit–cocircuit minimal. The implication follows from Corollary 3.2.

• (3) ⇒ (1). The proof is the same as for (2) ⇒ (1) except that, at the end,−AM and−BM are cocircuit reversal equivalent
reorientations ofM that are both cocircuit minimal. The implication again follows from Corollary 3.2.

• (4) ⇒ (1), and (6) ⇒ (1) assuming M has no coloops. The two implications are the dual statements of (3) ⇒ (1) and
(5) ⇒ (1), respectively.

Finally, let us mention that the relations between the implication (5) ⇒ (1) and the other ones could also be handled
from the decomposition into acyclic and totally cyclic parts, along with the convolution formula for the Tutte polynomial,
similarly as in [7]. □

We end with an open question. By direct computation, the number of circuit–cocircuit reversal classes and the number
of bases differ by a rather large margin for small non-regular oriented matroids. So, does there exist an absolute constant
K > 1 such that the number of bases of a non-regular oriented matroid is at least K times the number of circuit–cocircuit
reversal classes?
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